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Dielectric shape dispersion and biaxial transitions in nematic liquid crystals
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Using two order tensors, we propose a mean-field model to describe the uniaxial and biaxial phases of
nematogenic molecules presenting a shape dispersion of their biaxial dielectric susceptibility. We recover the
classical isotropic-uniaxial-biaxial sequence of phases. The phase diagram exhibits a tricritical point, a feature
that cannot be retraced in the other mean-field models established for molecules without shape dispersion.
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I. INTRODUCTION

Biaxial nematic liquid crystals are still fascinating objec
from both experimental and theoretical points of view. A
though stable biaxial phases have unmistakably been
served in lyotropic systems since the pioneering work of
and Saupe@1#, the experimental evidence in favor of the
existence in thermotropic systems is still highly disput
~see, for example, Ref.@2# for a recent overview of this long
vexed question and Refs.@3,4# for a new approach to it!.

Most nematogenic molecules are intrinsically biaxi
Usually, they give rise to uniaxial phases as a consequenc
the rotational disorder around the long molecular axis, wh
eventually results in the definition of a single macrosco
director. However, this rotational disorder can be hampe
by interactions favoring the molecules to stick parallel to o
another: at low enough temperatures, these interact
should promote a biaxial nematic phase. In the past 30 ye
the description of such biaxial phases has posed many in
esting problems. At a macroscopic scale, the nematic ord
traditionally described by a symmetric, traceless tensorQ of
rank two. A general representation ofQ is given by

Q5SS ez^ ez2
1

3
I D1T~ex^ ex2ey^ ey!, ~1!

where I is the identity tensor andS and T are scalar order
parameters. In Eq.~1!, $ex ,ey ,ez% is the eigenframe ofQ: it
is thought of as a reference frame fixed in space. The
idea to assess the macroscopic effects of molecular biaxi
was of Freiser@5,6#. Within a mean-field molecular theory
he described a biaxial transition that follows at a lower te
perature the uniaxial one, first explained on a molecular b
by Maier and Saupe@7#; while this latter transition is of first
order and establishes a positive value ofS leavingT50, the
new transition is of second order and also makesTÞ0. This
theory, however, was not general enough because it did
distinguish the different origins of macroscopic biaxialit
the one related to the distribution of the long molecular a
from the one related to the distribution of the short molecu
1063-651X/2003/67~6!/061701~7!/$20.00 67 0617
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axes. A more general theory, now a classic, was propose
Straley @8#. He introduced an additional second-rank ord
tensorB to describe the macroscopic signs of theintrinsic,
molecular biaxiality. We assume that in the absence of ex
nal anisotropic causes, bothQ andB have one and the sam
eigenframe. Under this assumption,B has precisely the sam
form asQ in Eq. ~1!:

B5S8S ez^ ez2
1

3
I D1T8~ex^ ex2ey^ ey!. ~2!

If both these tensors are employed, a uniaxial phase oc
whenever bothQ andB are uniaxial, that is, whenever bot
T and T8 vanish. A general biaxial state is described by
four scalar parametersS, T, S8, andT8. An extrinsicbiaxi-
ality, which under appropriate external causes could also
exhibited by cylindrically symmetric molecules, is repr
sented by only two scalar order parameters, namely,SandT.

The models of Freiser and Straley have been extensi
studied, mostly in attempts to compare the predictions
these with measurements of microscopic biaxiality. Dist
guished examples of these studies are in the papers@9–16#.
The first comparison with Monte Carlo simulations was p
sented by Luckhurst and Romano@10#; this was more re-
cently followed by Biscariniet al. @13# who explored an im-
pressively large range of molecular biaxialities~see also Ref.
@15#!. They found the expected sequence of phase tra
tions: one transition at a higher temperature, which gener
a uniaxial state from the isotropic melt, with bothS andS8
different from zero, and another transition at a lower te
perature, where bothT and T8 are nonzero. In the biaxia
phase, they also measured values ofS andT8 close to unity,
always accompanied by very small values of the other t
parametersS8 andT. The molecular pair potential employe
in Ref. @13# is a special case of the one put forward
Straley@8#; it is based on a dispersion forces approximati
first applied in Ref.@9#, where the molecular biaxiality is
frequency independent.

The objective of this paper is to discuss in some detail
expression of Straley’s pair potential, which represents
©2003 The American Physical Society01-1
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general nematogenic interaction between molecules w
frequency-dependent biaxiality. A systematic analysis d
not exist for this general interaction; one wonders whethe
would bring some important novel feature. To make such
analysis easier, it is natural to choose a nematogenic c
pound with a simplified frequency-dependent biaxiality, f
which, for instance, the low frequency part would be pur
uniaxial and the high frequency one would add the requi
biaxiality. This search will indeed lead us to unveil a tricri
cal point in the phase diagram, a feature that is not fou
within the dispersion forces approximation and that rend
our phase diagram very similar to the one discovered
McMillan @17# in his mean-field model for the nematic-to
smecticA transition.

The paper is organized as follows. In Sec. II, we review
a tensorial notation the classical Straley interaction poten
and we propose criteria that would restrict the choice of
free parameters. This analysis suggests a mean-field m
for the biaxial phase, which is studied in Sec. III. Finally,
Sec. IV, we summarize the main conclusions of this pa
and comment on the avenues for further research tha
opens.

II. BIAXIAL INTERACTIONS

Biaxial molecules can schematically be described
platelets~see Fig. 1!. In every platelet, we distinguish th
major axism from two minor axese ande' . These are the
eigenvectors of any molecular polarizability tensor. The
isotropic part of every molecular biaxial tensor has tw
traceless, orthogonal components, which are defined as

qªm^ m2
1

3
I , ~3!

bªe^ e2e' ^ e'. ~4!

FIG. 1. Schematic description of a biaxial molecule. The u
vectorm represents the long molecular axis, whilee ande' repre-
sent the two minor axes.
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The tensorq is uniaxial aroundm, while b is biaxial: the
former has two equal eigenvalues, while the latter has
unequal eigenvalues. If we interpretm as being the long
molecular axis, thenq is the uniaxial tensor representing th
dominant geometric feature of the molecules, whileb repre-
sents their secondary biaxiality. Clearly, this interpretation
purely suggestive as such a simple geometric description
molecule is too naive. However, it becomes more meaning
when q and b are employed to describe the uniaxial a
biaxial components of molecules in their pairwise intera
tion. Let two molecules be described by the pairs of tens
(q,b) and (q8,b8). The most general orientational intera
tion energyV between them, linear in each pair of tenso
and invariant under their exchange, takes the form

V52U0$q•q81g~q•b81b•q8!1lb•b8%, ~5!

whereU0.0 is a typical interaction energy andg andl are
dimensionless parameters. Wheng5l50, Eq. ~5! repre-
sents the interaction energy put forward by Maier and Sa
@7#, which depends only on the uniaxial molecular comp
nents. When eitherg or l differs from 0, the biaxial com-
ponents also contribute to the molecular interaction: forg
50 and lÞ0, the biaxial component of one molecule
coupled only with the biaxial component of the other, wh
for gÞ0, both uniaxial and biaxial components are coup
together. In our tensorial notation, the expression forV in Eq.
~5! is precisely the one proposed by Straley@8#.

There are special cases of this interaction that dese
notice. First is the one wherel5g2. Equation~5! then re-
duces to

V52U0~q1gb!•~q81gb8!, ~6!

as proposed by Luckhurstet al. @9#. This formula can easily
be interpreted within London’s dispersion forces approxim
tion. The anisotropic part of the dielectric polarizability te
sor of a biaxial molecule is given by

e5euq1ebb, ~7!

whereeu andeb are the uniaxial and biaxial polarizabilitie
of the molecule, which depend on the frequencyn of the
polarizing field. In the limit where the molecules posses
single absorption frequencyna ~London approximation!, the
dispersion forces interaction can be given by the expres
in Eq. ~6! with g a function ofna ~see, for example, Sec. 6.
of Ref. @18#!. However, when the molecules possess m
than one absorption frequency, London’s theory for disp
sion forces breaks down and must be replaced by tha
McLachlan ~see Refs.@19,20# and Sec. 6.6 of Ref.@18#!.
Applying this theory, one would, in principle, find for th
interaction energyV the general expression in Eq.~5! with g
andl related to the molecular absorption frequencies. A s
cific attempt along these lines was made by Bergersenet al.
@11#, who viewed a biaxial molecule as consisting of thr
orthogonal oscillators with different frequencies. The Lo
don approximation model can also be recovered in the p

t

1-2
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DIELECTRIC SHAPE DISPERSION AND BIAXIAL . . . PHYSICAL REVIEW E 67, 061701 ~2003!
ence of dispersion, provided botheu andeb remain propor-
tional over the whole frequency range, which is a rath
particular situation.

Here, we do not further attempt to find special elect
static models to justify the expression forV in Eq. ~5!; we
rather seek the conditions to be required on bothg andl to
make this expression reflect some expected qualitative p
erties. Actually, it was already remarked in Ref.@10# that
settingl50 in Eq. ~5! would never allow the molecules t
reach a stable equilibrium when they all lie parallel to o
another. More generally, consider two molecules represe
by the pairs (q,b) and (q8,b8), so nearly parallel to one
another that the rotationR that takes the first into the secon
for which

q85RqRT and b85RbRT ~8!

can be represented as

R5I1aW1
1

2
a2W21o~a2!, ~9!

wherea is the rotation angle andW is the skew-symmetric
tensor associated with the unit vectorw along the axis of
rotation. By use of Eqs.~8! and ~9! in Eq. ~5!, we arrive at
the following expression for the incremental energydV rela-
tive to the state of complete alignment of the two molecu
~wherea50):

dV52
1

2
U0a2$tr~W2q2!2tr~Wq!212g@ tr~qbW2!

2tr~qWbW !#1l@ tr~W2b2!2tr~Wb!2#%1o~a2!.

~10!

Recalling thatWv5w3v for all vectorsv, we can give a
more transparent form to Eq.~10! in terms of the compo-
nents (w1 ,w2 ,w3) of w in the eigenframe$e,e' ,m% of both
q andb:

dV5
1

2
U0a2$~112g1l!w1

21~122g1l!w2
214lw3

2%

1o~a2!. ~11!

It follows from Eq.~11! thatdV is positive-definite when-
ever l.0 and u2gu,11l. These inequalities restrict th
admissible values ofg and l to lie within the fan-shaped
region depicted in Fig. 2. Further restrictions follow fro
Eq. ~11! if the ground biaxial state represented by the p
potential V in Eq. ~5! is calamitic, that is, with the long
molecular axism harder to be disoriented than the two min
axese and e' . This physical property has its mathematic
counterpart in requiring that the least eigenvalue of the q
dratic form fordV in Eq. ~11! be associated with the eigen
vector w5m. This amounts to say that, for a givena, the
torque tending to restore the complete alignment between
two interacting molecules is larger when the two long ax
are misaligned. Thus, requiring that both 4l,122g1l
and 4l,112g1l, we readily arrive at 2ugu,123l,
which corresponds to the shaded triangle in Fig. 2. T
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small region in the (g,l) plane is the one admissible in ou
study: it is traversed by the parabolal5g2 corresponding to
the dispersion forces approximation, the only one ext
sively studied so far, but it also contains numerous ot
interaction potentials. In this paper, we explore thel axis of
the admissible triangle. In the following, we set systema

cally g50 and takel within the interval@0,1
3 #: the only pair

potentialV that this family has in common with that of th
dispersion forces approximation is the Maier and Saupe o
which corresponds to the origin of the (g,l) plane. Physi-
cally, settingg50 in Eq. ~5! represents molecules with
special dispersion of the dielectric shape susceptibility:
low frequencies,eb is zero andeu would just create a
uniaxial nematic phase; at high frequencies,eu is zero ande
is purely biaxial. SinceV is a sum over frequencies of term
like that on the right-hand side of Eq.~6! ~see, for instance
Ref. @18#!, this is a possible justification for our choice. Th
choice is as peculiar as the one of the London approximat
since it is possible, though admittedly rather extreme,
imagine a molecule with a purely biaxiale, that is, witheu
50, at least in some frequency range; the dispersion for
interaction between real molecules should be described
the general Straley interaction.

III. MEAN-FIELD MODEL

We consider a homogeneous nematic liquid crystal in
absence of any external field. We assume the molecules t
biaxial and described by the pair of tensors (q,b) introduced
in Eqs. ~3! and ~4!. The two independent order tensors em
ployed by Straley@8#, Q andB, are defined as the ensemb
averageŝ q& and ^b&, respectively. Denoting by$w,q,c%
the standard Euler angles representing the rotation of an
dividual molecule with respect to the common eigenfra
$ex ,ey ,ez% of Q andB, which is fixed in space, one readil
sees that

m5cosw sinqex1sinw sinqey1cosqez , ~12!

FIG. 2. Admissible values for the dimensionless parameterl
andg in Eq. ~5!. The pair-interaction energyV is positive definite in
the fan-shaped region. The shaded triangle represents the cala
ground states. The broken line is the parabolal5g2 corresponding
to the dispersion forces approximation; it is tangent to the bound
of the fan-shaped region forl51.
1-3
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e5~cosc cosw cosq2sinc sinw!ex1~cosc sinw cosq

1sinc cosw!ey2cosc sinqez , ~13!

e'52~sinc cosw cosq1cosc sinw!ex

2~sinc sinw cosq2cosc cosw!ey1sinc sinqez ,

~14!

and from Eqs.~1! and ~2! one then arrives at

S5
3

2 K cos2q2
1

3L , ~15!

T5
1

2
^ sin2q cos 2w&, ~16!

S85
3

2
^ sin2q cos 2c&, ~17!

T85
1

2
^~11cos2q!cos 2w cos 2c22 cosq sin 2w sin 2c&,

~18!

which are essentially the same expressions used in Ref.@8#.
To compute these ensemble averages, we need to bu
probability distribution functionf 5 f (w,q,c).

There are two ways for the system to become biaxial.f
is isotropic inc, but anisotropic inw, thenT850, whereas
TÞ0: this is thephasebiaxiality produced, for instance, b
an anisotropic distribution of cylinderlike molecules und
an external field, but which is unlikely to occur spontan
ously. On the other hand, a functionf isotropic in w, but
anisotropic inc, would give T50, but T8Þ0: this is the
intrinsic biaxiality that would correspond to the natural te
dency of biaxial molecules to orient parallel to one anoth
We expect a spontaneous transition to induce such an in
sic biaxiality. For allf, the following bounds follow from the
admissible ranges of the Euler angles:

2 1
2 <S<1, 2 1

3 ~12S!<T< 1
3 ~12S!,

~19!
2~12S!<S8<~12S!, 21<T8<1.

We now build the distribution functionf by using a mean-
field approximation for a particular molecular interactio
We setg50 in Eq. ~5! for the pair-interaction potentialV
and we write the pseudopotentialU of a molecule in the
mean field described byQ andB as

U52U0~q•Q1lb•B!. ~20!

We start by takingl small enough to be interpreted as
perturbation parameter. The asymptotic analysis that we
form below aims at showing quantitatively how this mod
departs from the classical Maier-Saupe model. The proba
ity densityf for a molecular orientation described by the p
(q,b) is given by the Boltzmann distribution
06170
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f 5
1

Z
exp@b~q•Q1lb•B!#, ~21!

wherebªU0 /kBt, kB being the Boltzmann constant andt
the absolute temperature. In Eq.~21!, the partition functionZ
is defined by

ZªE
T
exp@b~q•Q1lb•B!#, ~22!

whereT is the toroidal manifoldS23S1 parametrized by the
Euler angles, withSn the unit sphere in then-dimensional
Euclidean space. Specifically, in Eqs.~21! and~22! q•Q and
b•B are expressed in terms of the Euler angles$w,q,c% and
the scalar order parameters (S,T,S8,T8) as

q•Q5SS cos2q2
1

3D1T sin2q cos 2w, ~23!

b•B5S8 sin2q cos 2c1T8@~11cos2q!cos 2w cos 2c

22 cosq sin 2w sin 2c#. ~24!

Moreover, the area measure onT in Eq. ~22! is
sinqdwdqdc.

Clearly, sincef depends on the averagesQ andB, it must
obey the following compatibility conditions:

Q5E
T

f q, B5E
T

f b. ~25!

Following Refs.@5,6#, we introduce the potential

F~Q,B!ªU0H 1

2
~Q•Q1lB•B!2

1

b
ln

Z

8p2J , ~26!

which has the property of attaining its extrema precisely
those order tensorsQ and B that comply with the compat-
ibility conditions ~25!. At equilibrium, F can be interpreted
as the free energy per molecule of the system. As remar
in Ref. @21#, arriving at the free energy out of equilibrium
Fneq requires much more care; however,F andFneq possess
precisely the same stationary points, which is what mat
here. When expressed in terms of the scalar order param
(S,T,S8,T8), the potential F will be denoted by
F* (S,T,S8,T8).

We first show that our model encompasses that of Ma
and Saupe. We setl50 in Eq.~26!: F* is now a function of
S and T only, which will more appropriately be denoted b
F0* . By expandingZ up to the 12th order inT, we checked
that the minimizers ofF0* can only occur forT50 at pre-
cisely the same values ofSobtained by Maier and Saupe@7#.
S50 for b<bc'6.81, while at b5bc a first-order
isotropic-to-nematic transition takes place which establis
S5Sc'0.43. We do not study in any further detail this cla
sical model for uniaxial nematics; we only heed thatF0*
attains its minimum atS5S0(b) andT50, with S0 a func-
tion increasing fromSc to unity as b ranges frombc to
infinity, which satisfies the inequality
1-4
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S0~b!>
1

4 S 113A12
20

3b D for all b>bc . ~27!

This estimate is easily obtained by requiring that the sec
derivative of F0* with respect toS at T50, which on all
stationary points ofF0* is quadratic inS, be positive atS
5S0. Here, the obvious conclusion is that for purely uniax
interactions, no transition to a phase biaxiality is possible

We now setl.0 to enforce a biaxial interaction betwee
molecules. We takel small enough, so as to justify an ex
pansion ofF* in l on a firmer ground than the expansion
F0* in T. From Eq.~26!, we arrive at the following expres
sion for F* near the critical point (S0,0) of F0* :

F* ~S0,0,S8,T8!

5F0* ~S0,0!1U0lH S 1

3
1

l

4
2

1

6
~12S0!bl DS82

1S 11
l

8
2

1

12
~517S0!bl DT82J 1O~l4!. ~28!

It is apparent from Eq.~28! that the origin of the (S8,T8)
plane would become unstable towards perturbations ofS8
andT8 as soon as

l.lS8ª
4

2~12S0!b23
,

~29!

l.lT8ª
24

2~517S0!b23
,

respectively. By use of inequality~27!, it is easily checked
that lT8,lS8 for all b>bc , and so in Eq.~28! T82 grows
systematically beforeS82 upon increasingl. Moreover, for a
given l, a good estimate of the critical valuebc8 of b at
which this secondary transition takes place can be obta
from the inequality

l>l0~b!ª
16

S 917A12
20

3b
D b22

.lT8 , ~30!

where l0 is a strictly decreasing function that decays li
1/b at infinity. Whenl is sufficiently small, the biaxial state
that is established forb.bc8 is characterized by havingS
5S0(b), T50, S850, andT8Þ0. Within this limit, only
two parameters are thus necessary to describe the trans
leading the system to this state:S for the first ~isotropic to
uniaxial! and T8 for the second~uniaxial to biaxial!. It is
shown below by numerical computations that for larger v
ues of l, both T and S8 are not exactly zero: they grow
wheneverT8 does, though remaining some orders of mag
tude smaller. Yet the biaxial phase is primarily described
the two prevailing order parametersS andT8, pertaining to
the two different tensorsQ andB.
06170
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So far in our analysis,l has been regarded as a perturb
tion parameter. By solving numerically the compatibili
conditions~25!, we now extend the validity of our model t

values ofl in the range@0,1
3 #. Choosing, for instance,l

5 1
6 , we plot in Fig. 3 the temperature evolution of the tw

dominant order parametersS and T8. For b5bc , we ob-
serve the first-order isotropic-to-uniaxial transition, followe
at lower temperatures by a saturation ofS towards 1. For
b5bc8.bc , we observe the second-order uniaxial-to-biax
transition, followed at lower temperatures by a saturation
T8 towards 1. We do not reproduce in this plot the graphs
S8 andT, which arise from 0 atb5bc8 , because their maxi-
mum values remain five orders of magnitude smaller thaS
andT8. The behavior shown by Fig. 3 is indeed typical f
all values ofl up tol t'0.20, above which the second-ord
transition becomes a first-order one. Figure 4 shows in
plane (l,1/b) the phase diagram predicted by our mod
Following Griffiths’s notation@22#, we represent the first
order transitions with a solid line and the second-order tr
sitions with a broken line: the point where they meet is t
tricritical point (l t,1/b t), with b t'7.07. The same se

FIG. 3. Order parametersSandT8 versus inverse temperatureb
for l51/6. The second-order transition from uniaxial to biax
nematic occurs atb5bc8'7.72.

FIG. 4. Phase diagram showing the reduced temperatureb
versus the biaxiality parameterl. The solid line represents the firs
order transitions, while the broken line represents the second-o
transitions. The tricritical and triple points occur forl t'0.20 and
b t'7.07, andlc'0.22 andbc'6.81, respectively.
1-5
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quence of phases exhibited in Fig. 3 occurs untill5lc
'0.22; forl.lc , there is a direct first-order transition from
the isotropic to the nematic biaxial phase, without any int
mediate uniaxial phase. The three phases coexist at the t
point (lc,1/bc). The phase diagram reproduces the expec
behavior: upon increasingl, the biaxial phase become
more and more favored.

The resemblance between this phase diagram and the
obtained by McMillan@17# within his mean-field model for
smecticA is remarkable. McMillan’s diagram exhibits a tr
critical point where the phase transition between the unia
and the smectic phase ceases to be of second order an
comes first order upon increasing the parameter that in
pseudopotential promotes the formation of smectic layers
make this comparison more quantitative, we note that at
tricritical point in our diagram, the temperaturetUB of the
uniaxial-to-biaxial transition is related to the temperaturet IN
of the isotropic-to-nematic transition throughtUB /t IN
5bc /b t'0.96, while at the tricritical point in McMillan’s
diagram the temperaturetNA of the nematic-to-smectic tran
sition is given bytNA /t IN'0.87. The existence of a tricritica
point in the phase diagram for biaxial nematics is a disti
tive feature predicted by our model. To our knowledge,
other microscopic models, mainly based on the dispers
forces approximation, predict a Landau critical point~see,
for example, Refs.@8,23–25#!, where, in Alben’s terminol-
ogy, an ‘‘accidental’’ second-order phase transition occu
This is the single point where the second-order lines sepa
ing the biaxial phase from the prolate and oblate uniax
phases, respectively, meet the first-order line, separating
uniaxial phases from the isotropic one: a direct transit
from the isotropic to the biaxial phase occurs there. T
point, which in our phrasing of the dispersion forces appro
mation appears forl5 1

3 , is not present in our diagram be
cause the model we employ is an extension of Maier
Saupe’s model withS.0, and so oblate uniaxial phases a
excluded from the start.

Positing a complete macroscopic theory for biaxial ne
atics that would describe both phase and intrinsic biaxiali
first requires writing the free energy in terms of both ord
tensorsQ andB. This would indeed be the central feature
the Landau theory near equilibrium. An approximate expr
sion for the Landau potential can be obtained by expand
in powers ofb the free energy in Eq.~26!. To within terms in
b4, F reads as

F~Q,B!5U0H 1

15F S 15

2
2b D tr Q22

4

21
b2tr Q3

1
1

105
b3~ tr Q2!2G1

1

5
lbS 5

2b
2l D tr B2

1
4

35
l2b2tr QB21

1

175
l2b3F11

3
~ tr QB!2

26trQ2B21l2~ tr B2!2G J . ~31!

For l50, the expression forF in Eq. ~31! coincides with the
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one obtained in Ref.@26# for Maier and Saupe’s model
Equation~31! is accordingly exposed to the same criticis
suffered by Ref.@26# in Ref. @21#, where a systematic ap
proximation to the nonequilibrium free energyFneq in the
vicinity of the equilibrium points correctly predicted byF
was proposed. Though the expression in Eq.~31! could be
quantitatively inaccurate, it retains some qualitative featu
of Fneq worth mentioning, as we learn from the simpler an
log in Ref. @26#. It predicts that whenl is sufficiently small
andb is not too large, the free energyF attains its minimum
in a uniaxial phase withQÞ0 and B50. The terms trQB,
tr B3, tr Q2B, tr Q3B, and trQB3, which would be allowed
in Eq. ~31! by the mere requirement of invariance und
rotations, are indeed missing because they would fail to
invariant under the symmetry transformation for the pseu
potential defined by (q,b)°(q,2b) and (Q,B)°(Q,
2B). The explicit temperature dependence of the coe
cients in Eq.~31! should not be taken literally, but their sign
are meaningful: in a theoryà la Landau, the coefficients o
Eq. ~31! are to be replaced by phenomenological parame
retaining the same sign. The purely phenomenological the
outlined in Refs.@27,28#, once restricted up to the fourt
order in the scalar order parametersS, S8, T, andT8, pro-
posed only four invariants in the free energy out of the
least eight possible.

We close the analysis of our model by comparing it w
the mean-field model for biaxial phases put forward by Fr
ser@5,6#. Assuming that the anisotropic part of the molecu
polarizability e be represented by Eq.~7!, Freiser writes the
pair potential asV52V0e•e8, with V0.0, but he takesQ
as^e& instead of̂ q&, and so the internal energy turns out
be quadratic inQ only. Freiser’s model has been fully solve
in Refs. @24,23#. The phase diagrams found there are ve
similar to the one shown by Straley@8# for a special relation
between the parametersg andl in Eq. ~5!; they all present a
Landau point, but no tricritical point. Mathematically, Frei
er’s model can be recovered as a special case of our
enforcing the constraintQ5B and by settingl5eb /eu in
Eq. ~20!. This actually forcesT and T8 to coincide. The
apparent simplification coming from mergingT8 andS in the
same tensor is eventually misleading because they do be
to two tensors with different physical origins.

IV. CONCLUSIONS

All microscopic models describing the onset of biax
nematic phases are based on intermolecular disper
forces. The interaction potential is taken to be proportiona
the inner product of the two tensors representing the an
tropic dielectric susceptibilities. In the presence of frequen
dispersion, the interaction is the sum of each frequency c
ponent. For real molecules, the interaction potential has t
the complicated form put forward by Straley on the basis
pure symmetry arguments. The first idealization of th
model, based on the London approximation, has been ex
sively discussed in the past. This case corresponds to
maximum coupling between uniaxial and biaxial molecu
susceptibilities, assumed to remain proportional over
whole frequency range. In this work, we have chosen
other, or-
1-6
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thogonal avenue, the one that presents the least pos
coupling between uniaxial and biaxial susceptibilities. R
molecules are expected to present an intermediate beh
between these two idealizations. Along this line of thoug
we have presented a simple mean-field model for
uniaxial-to-biaxial transition in nematic liquid crystal
which identifies two dominant scalar order parameters. It
plains why the single-order tensor description first employ
by Freiser is of a limited use, despite its apparent succes
suggests an approximate expression for the macroscopic
energy in terms of the relevant invariants of the two ord
tensors actually needed to describe the behavior of bia
nematics. The structure of this potential is the theoret
premise for a complete macroscopic theory able to desc
the interplay between phase and intrinsic biaxialities.

Our model has revealed the existence of a tricritical po
in the phase diagram, which, to our knowledge, cannot
retraced in any other molecular model for biaxial liquid cry
tals, though it is fully compatible with the Landau theo
@29#. This result raises a number of questions. First, it s
gests a bifurcation analysis to classify all Landau potent
compatible with this feature, whenever only two scalar or
parameters are dominant, in the spirit of the theory dev
oped in Ref.@30#. Moreover, since in our model the tricritica
point is projected on thel axis of the admissible triangle in
Fig. 2, the question arises whether forgÞ0 the tricritical
point still exists and how its projection wanders in the (g,l)
plane. Since no tricritical point is associated with the disp
ol

q.

n

od

tt.
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sion forces approximation, which predicts a Landau poin
l5 1

3 , a sensible conjecture is that there is a path of tricriti
points projected on the (g,l) plane that joins the poin
(0,l t) to the two symmetric points atl5 1

3 on the parabola
l5g2. These issues will be addressed in near future.

We are aware of the fact that arguments different fro
merely resorting to the dispersion forces approximat
could justify a choice of dominant order parameters, which
consistent with settingl5g2 in the molecular pair potential
even without ever considering the latter~see, for example,
Ref. @31#!. However, thescenariounveiled by the study of
our limiting model withg50 andlÞ0, which is also likely
to persist forl'g2, makes somewhat singular all analys
based on, or equivalent to, setting preciselyl5g2. Further
studies are needed to explore properly how the phase
gram evolves when two extreme situations compatible w
the model molecular interaction of Straley are bridged
gether, that is, the London approximation, where the t
biaxial order parameters show maximum coupling, and
approximation studied in this paper, where the order para
eters show minimum coupling.
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